การสื่อสารผ่านดาวเทียม

การสื่อสารผ่านดาวเทียม

การสื่อสารผ่านดาวเทียม (Satellite Communication)
          มนุษย์ได้คิดค้นดาวเทียมขึ้นมาเพื่อให้สามารถติดต่อสื่อสารกันได้ในระยะทางไกลๆ โดยดาวเทียมที่สร้างขึ้นในสมัยแรก ๆ นั้นจะทำหน้าที่เป็นตัวสะท้อน
คลื่นวิทยุความถี่ไมโครเวฟต่อมาได้มีการพัฒนาให้มีการติดตั้งอุปกรณ์รับส่งคลื่นไมโครเวฟเข้าไปในตัวดาวเทียม เพื่อใช้ทวนสัญญาณความถี่ไมโครเวฟแล้ว
แปลงความถี่ให้แตกต่างกันก่อนส่งมายังโลก ดาวเทียมสามารถโคจรรอบโลกได้โดยอาศัยแรงดึงดูดของโลก ส่งผลให้โคจรรอบโลกได้ในลักษณะเดียวกันกับ
ดวงจันทร์และดวงอาทิตย์ นับตั้งแต่การประดิษฐ์คิดค้นดาวเทียมขึ้นมาทำให้โลกเกิดสิ่งใหม่ๆ และอำนวยประโยชน์ให้มนุษย์อย่างมากมายทั้งในอดีต ปัจจุบัน และ
อนาคต ผู้เรียบเรียงได้นำเสนอเนื้อหาที่เกี่ยวข้องดังนี้

1. ประวัติของการสื่อสารผ่านดาวเทียม

          ดาวเทียมเป็นสิ่งประดิษฐ์ที่มนุษย์สร้างขึ้น ซึ่งได้ถูกส่งขึ้นไปโคจรรอบโลกครั้งแรกเมื่อปี พ.ศ. 2500 โดยสหภาพรัสเซียได้ส่งดาวเทียมขึ้นไปชื่อ สปุตนิก 1
(Sputnik 1) เพื่อทำหน้าที่ตรวจสอบการแผ่รังสีของชั้นบรรยากาศชั้นไอโอโนสเฟียร์ ต่อมาในปี พ.ศ. 2501 สหรัฐอเมริกาได้ส่งดาวเทียมชื่อเอ็กซ์พลอเรอร์ 1
(Explorer 1) ขึ้นสู่อวกาศ และได้ส่งดาวเทียมชื่อ สกอร์ (Score) เพื่อใช้เป็นดาวเทียมสื่อสาร ซึ่งถือว่าเป็นการสื่อสารผ่านดาวเทียมเป็นครั้งแรกของโลก ทำให้
สหภาพรัสเซียและสหรัฐอเมริกาเป็นสองประเทศผู้นำทางด้านการสำรวจทางอวกาศ ในเดือนสิงหาคม พ.ศ. 2503 สหรัฐอเมริกาได้ส่งดาวเทียมชื่อเอ็กโค 1
(Echo 1) ขึ้นไปเพื่อทำหน้าที่ในการสะท้อนคลื่นวิทยุสู่โลกได้เป็นผลสำเร็จ โดยทดลองถ่ายทอดสัญญาณโทรศัพท์และโทรทัศน์และในปี พ.ศ. 2506-2507
สหรัฐอเมริกาได้ส่งดาวเทียมชื่อ ซิงคอม 1 (Syncom 1) ซึ่งเป็นดาวเทียมที่เคลื่อนที่รอบโลกด้วยความเร็วที่โลกหมุนรอบตัวเอง ซึ่งใช้ถ่ายทอดข่าวสารจากทวีป
อเมริกาเหนือไปยังทวีปอเมริกาใต้ โดยเป็นสัญญาณพูดโทรศัพท์ข้ามทวีป และได้ส่งดาวเทียมชื่อ รีเลย์ 2 (Relay 2) เพื่อใช้ติดต่อสื่อสารระหว่างสหรัฐอเมริกา
และญี่ปุ่นเป็นครั้งแรก รวมถึงการจัดตั้งสหภาพโทรคมนาคมระหว่างประเทศมีจำนวนสมาชิก 11 ประเทศ และได้จัดตั้งองค์การโทรคมนาคมทางดาวเทียมระหว่าง
ประเทศ หรืออินเทลแซต (INTELSAT) ขึ้น ให้บริษัทคอมแซต (COMSAT) ของสหรัฐอเมริกาเป็นผู้จัดการธุรกิจต่างๆ

2. วงโคจรของดาวเทียม
          การโคจรของดาวเทียมนั้นมีพื้นฐานมาจากหลักการเคลื่อนที่ของวัตถุที่มีความเร็วสูง ที่กล่าวว่าถ้าวัตถุเคลื่อนที่ด้วยความเร็วสูงมากๆ ประมาณ 8 กิโลเมตร
ต่อวินาที วัตถุจะไม่ตกลงสู่พื้นโลกและสามารถเคลื่อนที่รอบโลกได้ซึ่งดาวเทียมเคลื่อน ที่ด้วยความเร็วสูงโดยหนีแรงดึงดูดของโลกก็จะทำให้ดาวเทียมสามารถ
โคจรรอบโลกได้ ซึ่งวงโคจรของดาวเทียมสามารถแบ่งประเภทได้ดังนี้
          2.1 วงโคจรแบบสัมพันธ์กับดวงอาทิตย์ (Sun-Synchronous Orbit) วงโคจรนี้แบ่งออกเป็น 2 ลักษณะดังนี้
                 2.1.1 โพล่า ออบิท (Polar Orbit) เป็นวงโคจรที่มีลักษณะเป็นวงกลมโดยมีเส้นผ่านศูนย์กลางในแนว ขั้วโลก ซึ่งวงโคจรนี้จะมีระยะความสูง 500-1,000 กิโลเมตรจากพื้นโลก

ภาพที่ 1 วงโคจรแบบโพล่า ออบิทเป็นวงกลม
ข้อมูลภาพ ณ วันที่16-9-56
                2.1.2 อินไคล ออบิท (Inclined Orbit) เป็นวงโคจรที่มีลักษณะเป็นทั้งวงกลมและวงรี ทั้งนี้ขึ้นอยู่กับความเฉียงหรือมุมที่ทำกับระนาบศูนย์สูตร ซึ่ง
วงโคจรนี้จะมีระยะความสูง 5,000-13,000 กิโลเมตรจากพื้นโลก

ภาพที่ 2 วงโคจรแบบโพล่า ออบิทเป็นวงกลมและวงรี
ข้อมูลภาพ ณ วันที่16-9-56
                 2.2 วงโคจรแบบเคลื่อนที่ด้วยความเร็วเท่าโลกหมุน (Equatorial Orbit) เป็นวงโคจรรูปวงกลมมนตามแนวระนาบกับเส้นศูนย์สูตร โดยเคลื่อนที่ด้วย
ความเร็วเท่ากับความเร็วที่โลกหมุนรอบตัวเอง ซึ่งจะใช้เวลาในการโคจร 24 ชั่วโมงต่อรอบ ทำให้เหมือนกับว่าดาวเทียมลอยนิ่งอยู่กับที่จึงเรียกวงโคจรนี้ว่า
วงโคจรค้างฟ้า ระยะความสูงของตัวดาวเทียมจากพื้นโลกมีค่าประมาณ 35,800 กิโลเมตร

ภาพที่ 3 วงโคจรแบบเคลื่อนที่ด้วยความเร็วเท่าโลกหมุนหรือวงโคจรค้างฟ้า
ข้อมูลภาพ ณ วันที่16-9-56
          ดาวเทียมจะโคจรรอบโลกตามแนวการหมุนของโลกหรือในแนวเส้นศูนย์สูตร ซึ่งวงโคจรของดาวเทียม เมื่อแบ่งตามระยะความสูงจากพื้นโลกสามารถ
แบ่งได้เป็น 3 ระยะคือ
          1. วงโคจรระยะต่ำ (Low Earth Orbit) วงโคจรนี้อยู่สูงจากพื้นโลกไม่เกิน 1,000 กิโลเมตร ดาวเทียมที่มีวงโคจรลักษณะนี้ส่วนใหญ่จะใช้ในการสำรวจ
สภาวะแวดล้อมและสังเกตการณ์ ซึ่งไม่สามารถใช้งานครอบคลุมบริเวณใดบริเวณหนึ่งได้ตลอดเวลา
          2. วงโคจรระยะปานกลาง (Medium Earth Orbit) วงโคจรนี้อยู่สูงจากพื้นโลกตั้งแต่ 1,000 กิโลเมตรขึ้นไป ส่วนใหญ่จะใช้ในด้านอุตุนิยมวิทยาและใช้
เพื่อติดต่อสื่อสารในบางพื้นที่
          3. วงโคจรประจำที่ (Geostationary Earth Orbit) วงโคจรนี้จะอยู่สูงจากพื้นโลกประมาณ 35,800 กิโลเมตรซึ่งเป็นเส้นทางโคจรอยู่ในแนวเส้นศูนย์สูตร
ดาวเทียมที่มีวงโคจรลักษณะนี้ส่วนใหญ่ใช้เพื่อการสื่อสาร

3. ประเภทของดาวเทียม ซึ่งสามารถแบ่งดาวเทียมตามลักษณะของการใช้งานได้ดังนี้
          3.1 ดาวเทียมสื่อสาร ใช้เพื่อการสื่อสารโทรคมนาคม ซึ่งจะต้องทำงานอยู่ตลอดเวลา 24 ชั่วโมง เพื่อเชื่อมโยงเครือข่ายการสื่อสารของโลกเข้าด้วยกัน เช่น
การถ่ายทอดสัญญาณโทรทัศน์ทั้งในประเทศ และข้ามทวีป การติดต่อสื่อสารทางโทรศัพท์มือถือ และอินเตอร์เน็ต เป็นต้น อายุการใช้งานของดาวเทียมชนิดนี้จะมี
อายุใช้งานประมาณ 10-15 ปี เมื่อส่งดาวเทียมสื่อสารขึ้นไปโคจรดาวเทียมจะพร้อมทำงานโดยทันที ซึ่งจะส่งสัญญาณไปยังสถานีภาคพื้นดิน และที่สถานีภาคพื้น
ดินจะมีอุปกรณ์รับสัญญาณที่เรียกว่า ทรานสปอนเดอร์ (Transponder) เพื่อทำหน้าที่รับสัญญาณแล้วกระจายไปยังสถานีต่างๆ บนพื้นผิวโลก ดาวเทียมสื่อสารจะ
ทำงานโดยอาศัยหลักการส่งสัญญาณ ถึงกันระหว่างสถานีภาคพื้นดินและสถานีอวกาศ ซึ่งวิถีการโคจรของดาวเทียมชนิดนี้เป็นวงโคจรค้างฟ้า ดาวเทียมสื่อสารที่ใช้
ในประเทศไทยก็คือ ดาวเทียมไทยคม 1-5 ดาวเทียมไทยคมจะมีรัศมีการให้บริการครอบคลุมทั่วทั้งประเทศไทยและประเทศใกล้เคียง

ภาพที่ 4 ดาวเทียมไทยคม 1
ข้อมูลภาพ ณ วันที่16-9-56
          3.2 ดาวเทียมสำรวจทรัพยากร ใช้เพื่อศึกษาลักษณะทางภูมิศาสตร์ของโลก ไม่ว่าจะเป็นธรณีวิทยา อุทกวิทยา การสำรวจพื้นที่ป่าไม้ พื้นที่ทางการเกษตร
การใช้ที่ดิน และน้ำ เป็นต้น ดาวเทียมสำรวจทรัพยากรดวงแรกของโลกคือดาวเทียม Landset ถูกส่งขึ้นไปสู่วงโคจรเมื่อ พ.ศ. 2515 ดาวเทียมชนิดนี้จะออกแบบ
ให้มีความสามารถในการถ่ายภาพจากดาวเทียมและการติดต่อสื่อสารในระยะไกลซึ่งเรียกว่า การสำรวจจากระยะไกล (Remote Sensing) เพื่อที่จะสามารถ
แยกแยะจำแนก และวิเคราะห์ข้อมูลต่างๆ ได้ถูกต้อง สำหรับประเทศไทยนั้นกระทรวงวิทยาศาสตร์และเทคโนโลยีได้ลงนามร่วมมือกับ บริษัท Astrium S.A.S.
ประเทศฝรั่งเศส เพื่อสร้างดาวเทียมสำรวจทรัพยากรเมื่อวันที่ 19 กรกฎาคม 2547 ในชื่อโครงการธีออส

ภาพที่ 5 ดาวเทียมธีออส
ข้อมูลภาพ ณ วันที่16-9-56
          3.3 ดาวเทียมอุตุนิยมวิทยา ใช้เพื่อให้ข้อมูลเกี่ยวกับสภาพภูมิอากาศ เช่น ข่าวสารพายุ อุณหภูมิ และสภาพทางภูมิอากาศต่างๆ เพื่อนำข้อมูลที่ได้มาใช้
วิเคราะห์สำหรับประกาศเตือนภัยพิบัติต่างๆ ให้ทราบ ดาวเทียมอุตุนิยมวิทยานี้จะให้ข้อมูลด้วยภาพถ่ายเรดาร์ และภาพถ่ายอินฟราเรดสำหรับใช้ในการวิเคราะห์
ดาวเทียมอุตุนิยมวิทยาดวงแรกของโลกคือ ดาวเทียม Essa 1 ของประเทศสหรัฐอเมริกา ซึ่งถูกส่งขึ้นไปโคจรในอวกาศเมื่อปี พ.ศ. 2509 ดาวเทียมชนิดนี้ได้แก่
ดาวเทียม GMS-5 และดาวเทียม GOES-10 เป็นของประเทศญี่ปุ่น ส่วนดาวเทียม NOAA เป็นของประเทศสหรัฐอเมริกา และดาวเทียม FY-2 ของประเทศจีน

ภาพที่ 6 ดาวเทียม GMS-5ข้อมูลภาพ ณ วันที่16-9-56
          3.4 ดาวเทียมบอกตำแหน่ง ใช้เพื่อเป็นระบบนำร่องให้กับเรือและเครื่องบิน ตลอดจนใช้บอกตำแหน่งของวัตถุต่างๆ บนพื้นผิวโลก ซึ่งระบบหาตำแหน่งโดย
ใช้ดาวเทียมนี้จะเรียกว่าระบบ GPS (Global Positioning Satellite System) ซึ่งดาวเทียมบอกตำแหน่งนี้แรกเริ่มเดิมทีนั้นจะนำมาใช้ในการทหารปัจจุบัน
ได้มีการนำมาใช้ในเชิงพาณิชย์เพื่อใช้สำหรับนำร่องให้กับเครื่องบินและเรือเดินสมุทร วิถีโคจรของดาวเทียมชนิดนี้จะโคจรแบบสัมพันธ์กับดวงอาทิตย์ (Sun
Synchronous) ดาวเทียมชนิดนี้ได้แก่ กลุ่มดาวเทียมบอกตำแหน่ง Navstar

ภาพที่ 7 กลุ่มดาวเทียมบอกตำแหน่ง Navstar
ข้อมูลภาพ ณ วันที่16-9-56
          3.5 ดาวเทียมสมุทรศาสตร์ ใช้เพื่อสำรวจทางทะเลทำให้นักวิทยาศาสตร์ทางทะเลและนักชีววิทยาทางทะเลสามารถวิเคราะห์และตรวจจับความเคลื่อนไหว
ต่างๆ ในท้องทะเลได้ ไม่ว่าจะเป็นความแปรปรวนของคลื่นลม กระแสน้ำ แหล่งปะการัง สภาพแวดล้อม และลักษณะของสิ่งมีชีวิตทางทะเล เป็นต้น ดาวเทียม
สมุทรศาสตร์ดวงแรกของโลกได้แก่ ดาวเทียม Seasat และได้มีการพัฒนาสร้างดาวเทียมทางสมุทรศาสตร์อีกหลายดวง เช่น ดาวเทียม Robinson 34,
ดาวเทียม Mos 1 เป็นต้น

ภาพที่ 8 ดาวเทียม Seasatข้อมูลภาพ ณ วันที่16-9-56
          3.6 ดาวเทียมสำรวจอวกาศ ใช้เพื่อสำรวจอวกาศเพื่อตรวจจับสภาพแวดล้อมต่างๆ ในอวกาศไม่ว่าจะเป็นคลื่นแม่เหล็กไฟฟ้า สิ่งมีชีวิต และสภาวะต่าง ๆ
เป็นต้น ดาวเทียมสำรวจอวกาศจะถูกนำขึ้นไปสู่วงโคจรที่สูงกว่าดาวเทียมประเภทอื่นๆ ทำให้ไม่มีชั้นบรรยากาศโลกกั้นขวาง ดาวเทียมชนิดนี้ได้แก่ ดาวเทียม
Mars Probe และดาวเทียม Moon Probe

ภาพที่ 9 ดาวเทียม Mars Probeข้อมูลภาพ ณ วันที่16-9-56
          3.7 ดาวเทียมจารกรรม ใช้เพื่อการสอดแนมและค้นหา เป็นดาวเทียมที่นิยมใช้ในกิจการทางทหาร ทั้งนี้เพราะสามารถสืบหาตำแหน่งและรายละเอียด
เฉพาะที่ต้องการได้ทั้งในที่มืดและที่สว่าง ตรวจหาคลื่นวิทยุ สอดแนมทางการทหารของประเทศคู่แข่ง ตลอดจนสามารถสร้างดาวเทียมได้ตามความต้องการใน
ด้านกิจการทหาร ดาวเทียมชนิดนี้ได้แก่ ดาวเทียม DS3, ดาวเทียม COSMOS ของสหภาพรัสเซีย ดาวเทียม Big Bird, ดาวเทียม COSMOS 389 Elint
ของสหรัฐอเมริกา

ภาพที่ 10 ดาวเทียม COSMOS 389 Elint
ข้อมูลภาพ ณ วันที่16-9-56
4. ส่วนประกอบของดาวเทียม
          ดาวเทียมเป็นเครื่องมือทางอิเล็กทรอนิกส์ที่ซับซ้อน มีส่วนประกอบหลายๆ อย่างสามารถทำงานได้โดยอัตโนมัติ และทำงานได้อย่างมีประสิทธิภาพมากที่สุด
แต่ละส่วนมีระบบควบคุมการทำงานแยกย่อยกันไป มีองค์- ประกอบส่วนใหญ่ของดาวเทียมดังนี้
          4.1 โครงสร้างของดาวเทียม เป็นส่วนที่มีความสำคัญมากส่วนหนึ่ง เพราะเป็นส่วนประกอบภายนอกของดาวเทียม ที่จะต้องมีน้ำหนักเบาและทนทาน ทั้งนี้
น้ำหนักของส่วนโครงสร้างนี้จะต้องมีประมาณ 20-25% ของน้ำหนักรวม
          4.2 ระบบเครื่องยนต์ เป็นส่วนที่ทำงานคล้ายกับเครื่องอัดและปล่อยอากาศ ซึ่งระบบส่วนนี้จะทำงานในสภาวะสูญญากาศโดยไม่มีแรงโน้มถ่วง
          4.3 ระบบพลังงาน เป็นส่วนที่ผลิตพลังงานให้กับดาวเทียม ส่วนนี้จะมีแผงพลังงานแสงอาทิตย์สำหรับรับพลังงาน เพื่อเปลี่ยนให้เป็นพลังงานไฟฟ้าให้กับ
ดาวเทียม
          4.4 ระบบควบคุมและบังคับ เป็นส่วนที่ประมวลผลคำสั่งต่างๆ ให้กับดาวเทียมสำหรับติดต่อสื่อสารกับโลก ซึ่งภายในส่วนนี้จะประกอบด้วยคอมพิวเตอร์
          4.5 ระบบสื่อสารและนำทาง เป็นส่วนที่นำทางให้ดาวเทียมเคลื่อนที่ในวงโคจรที่กำหนด ซึ่งในส่วนนี้จะมีอุปกรณ์ตรวจจับความร้อนซึ่งทำงานโดยแผง
ควบคุมอัตโนมัติ
          4.6 อุปกรณ์ควบคุมระดับความสูง เป็นส่วนที่ทำหน้าที่รักษาระดับความสูงให้สัมพันธ์กับพื้นโลกและดวงอาทิตย์ ทั้งนี้ก็เพื่อให้ดาวเทียมสามารถรักษาระดับ
ให้โคจรได้
          4.7 เครื่องมือบอกตำแหน่ง เป็นส่วนที่กำหนดการเคลื่อนที่ของดาวเทียม

ภาพที่ 11 ส่วนประกอบของดาวเทียมข้อมูลภาพ ณ วันที่16-9-56
5. ระบบของการสื่อสารดาวเทียม
          ดาวเทียมสื่อสาร เป็นดาวเทียมที่ใช้ในการติดต่อสื่อสารทั้งในประเทศและระหว่างประเทศ ตลอดจนการคมนาคมขนส่ง ช่วยในการควบคุมเส้นทางและบอก
ตำแหน่งที่อยู่ โดยดาวเทียมจะทำหน้าที่เป็นสถานีรับส่งคลื่นวิทยุสื่อสารติดต่อกับสถานี ภาคพื้นดินช่วยให้กิจการสื่อสารทางโทรศัพท์ โทรพิมพ์ โทรสาร และการ
ถ่ายทอดสัญญาณโทรทัศน์ระหว่างประเทศเป็นไปอย่างทั่วถึงและรวดเร็ว สำหรับประเทศไทยใช้บริการของดาวเทียมอินเทลแสตและดาวเทียมปาลาปา ของ
ประเทศอินโดนีเซีย
          ดาวเทียมเพื่อการสื่อสารนั้นจะทำหน้าที่เป็นสถานีทวนสัญญาณซึ่งใน ดาวเทียมจะติดตั้งอุปกรณ์รับส่งคลื่นวิทยุเพื่อใช้รับและถ่ายทอดสัญญาณสู่ พื้นโลก
โดยพลังงานไฟฟ้าที่ใช้ในตัวดาวเทียมนั้นได้มาจากเซลล์แสงอาทิตย์ ซึ่งระบบการสื่อสารด้วยดาวเทียมนั้นจะมีองค์ประกอบสำคัญ 2 ส่วนคือส่วนภาคอวกาศ
(Space Segment) ซึ่งได้แก่ ตัวดาวเทียม และส่วนภาคพื้นดิน (Ground Segment) ซึ่งได้แก่ สถานีรับส่งภาคพื้นดินศูนย์โทรคมนาคม

ภาพที่ 12 ระบบสื่อสารดาวเทียม 
ข้อมูลภาพ ณ วันที่16-9-56
          สถานีภาคพื้นดินแต่ละแห่งนั้นสามารถเป็นได้ทั้งสถานีรับและสถานีส่ง จึงทำให้สถานีภาคพื้นดินแต่ละแห่งมีทั้งเครื่องรับและเครื่องส่ง ส่วนดาวเทียมนั้นจะ
เป็นเพียงสถานีทวนสัญญาณและส่งสัญญาณไปยังจุดหมายปลายทางที่สถานีภาคพื้นดินอื่นๆ และสัญญาณจากสถานีรับส่งภาคพื้นดินจะส่งไปยังศูนย์โทรคมนาคม
แล้วศูนย์โทรคมนาคมจะส่งสัญญาณไปยังสถานีโทรทัศน์ สถานีวิทยุปลายทาง
          การสื่อสารผ่านดาวเทียมสามารถกระทำได้โดยสถานีภาคพื้นดินส่งคลื่น ความถี่ไมโครเวฟผสมสัญญาณข่าวสารขึ้นไปยังดาวเทียม ซึ่งจะเรียกว่าความถี่
เชื่อมโยงขาขึ้น (Up-Link Frequency) โดยปกติความถี่ไมโครเวฟขาขึ้นจะใช้ประมาณ 6 กิกะเฮิร์ต เครื่องรับภายในตัวดาวเทียมจะรับสัญญาณเข้ามาแล้ว
ทวนสัญญาณให้แรงขึ้นพร้อมกำจัดสัญญาณรบกวนออกไป ก่อนส่งสัญญาณกลับมายังพื้นดิน ทั้งนี้ดาวเทียมจะทำการเปลี่ยนความถี่คลื่นไมโครเวฟให้แตกต่าง
ไปจากความถี่ขาขึ้นแล้วจึงส่งความถี่ไมโครเวฟที่ผสมสัญญาณข่าวสารกลับลงมาเรียกว่า ความถี่เชื่อมโยง ขาลง (Down-Link Frequency) โดยปกติความถี่
ไมโครเวฟขาลงจะใช้ประมาณ 4 กิกะเฮิร์ต

ภาพที่ 13 การใช้ดาวเทียมสื่อสารในการทวนสัญญาณไมโครเวฟ
ข้อมูลภาพ ณ วันที่16-9-56
          ดาวเทียมสื่อสารโดยทั่วไปมักใช้งานในแถบความถี่ย่านไมโครเวฟ ซึ่งย่านความถี่ไมโครเวฟนี้จะถูกแบ่งเป็นย่านความถี่ย่อยๆ เพื่อกำหนดใช้งาน ทั้งนี้แต่ละย่านความถี่จะมีการกำหนดชื่อเรียกเป็นภาษาอังกฤษ
ตารางที่ 1 ย่านความถี่ในการใช้งานสำหรับการสื่อสารดาวเทียม
ย่านความถี่
ชื่อย่าน
225 – 390 MHz
p
350 – 530 MHz
J
1350 – 2700 MHz
L
2500 – 2700 MHz
S
3400 – 6425 MHz
C
7250 – 8400 MHz
X
10.95 – 14.50 GHz
Ku
17.70 – 21.20 GHz
Kc
27.50 – 31 GHz
K
36 – 46 GHz
Q
46 – 56 GHz
V
56 – 100 GHz
W
          สำหรับย่านความถี่ที่นิยมใช้งานในกิจการดาวเทียมสื่อสารนั้น ได้แก่ ย่านความถี่ C (C band) ซึ่งมีย่านความถี่ 3400 – 6425 เมกกะเฮิร์ต โดยทั่วไปมัก
ใช้ความถี่ขาขึ้น (Up Link) ในช่วง 5.925 กิกะเฮิร์ต ถึง 6.425 กิกะเฮิร์ต และใช้ย่านความถี่ขาลง (Down Link) ในช่วง 3.7 กิกะเฮิร์ต ถึง 4.2 กิกะเฮิร์ต โดย
ทั่วไปแล้วย่านความถี่ C หรือ C แบนด์ นี้นิยมเรียกชื่อตามความถี่ที่ใช้งาน คือ ขาขึ้น 6 กิกะเฮิร์ต และขาลง 4 กิกะเฮิร์ต ซึ่งจะเขียนแทนด้วย 6 GHz/4 GHz
เนื่องจากย่านความถี่ C ไม่สามารถรองรับจำนวนของการสื่อสารที่เพิ่มขึ้นได้ จึงได้มีการใช้ย่านความถี่ที่สูงขึ้นไปอีกคือ ย่านความถี่ Ku (Ku band) ซึ่งมีย่าน
ความถี่ 10.95 – 14.50 กิกะเฮิร์ต โดยทั่วไปมักใช้ความถี่ขาขึ้น (Up Link) ในช่วง 14 กิกะเฮิร์ต ถึง 14.50 กิกะเฮิร์ต และใช้ย่านความถี่ขาลง (Down Link)
ในช่วง 11.70 กิกะเฮิร์ต ถึง 12.20 กิกะเฮิร์ต โดยทั่วไปแล้วย่านความถี่ Ku หรือ Ku แบนด์ นี้จะนิยมเรียกความถี่ใช้งานขาขึ้น 14 กิกะเฮิร์ต และขาลง
12 กิกะเฮิร์ต ซึ่งจะเขียนแทนด้วย 14 GHz/12 GH

ความคิดเห็น

โพสต์ยอดนิยมจากบล็อกนี้

ระบบเครือข่ายโทรศัพท์เคลื่อนที่

ภาคBASEBAND หรือ ภาคBB

การทำงานบล็อกไดอะแกรม ของเครื่องรับวิทยุ AM,FM