การทำงานบล็อกไดอะแกรม ของเครื่องรับวิทยุ AM,FM

การทำงาน ของเครื่องรับวิทยุ AM,FM
ครื่องรับวิทยุ เป็นเครื่องมือสื่อสารทางเดียวชนิดหนึ่ง ทำหน้าที่รับและเลือกคลื่นวิทยุจากสายอากาศ แล้วนำไปสู่ภาคขยายต่อไป โดยมีช่วงความถี่ของคลื่นที่กว้าง แล้วแต่ประเภทของการใช้งาน
โดยทั่วไป คำว่า "เครื่องวิทยุ" มักจะใช้เรียกเครื่องรับสัญญาณความถี่กระจายเสียง เพื่อส่งข่าวสาร และความบันเทิง โดยมีย่านความถี่หลักๆ คือ คลื่นสั้น คลื่นกลาง และคลื่นยาว




ประวัติ

เครื่องรับวิทยุเกิดขึ้นในราว พ.ศ. 2439 ในงานจัดแสดงของรัสเซีย โดย Alexander Stepanovich Popov
ในประเทศไทยยุคแรกประมาณปี พ.ศ. 2470 ได้ติดตั้งเครื่องส่งวิทยุระบบ AM ขนาด 200 วัตต์ ณ ที่ทำการไปรษณีย์โทรเลข โดยการควบคุมของช่างวิทยุกรมไปรษณีย์โทรเลข นับเป็นครั้งแรกที่มีเครื่องส่งวิทยุกระจายเสียงออกอากาศ เครื่องรับวิทยุในยุคแรกนั้นเป็นชนิดแร่ มีเสียงเบามากและต้องใช้หูฟัง ต่อมาเปลี่ยนเป็นเครื่องรับชนิดหลอดสุญญากาศ มีความดังมากขึ้น เช่น เครื่องรับชนิด 4 หลอด ถึง 8 หลอด
ประมาณปี พ.ศ. 2500 เป็นยุคเครื่องรับวิทยุทรานซิสเตอร์ แต่ระยะแรกๆ ยังมีขนาดใหญ่มากและต่อมามีการพัฒนาอุปกรณ์และวงจรให้มีขนาดเล็กลงตามลำดับ จนสามารถนำไปในสถานที่ต่างๆได้ ทำให้กิจการวิทยุเป็นที่ยอมรับของประชาชนและมีสถานีส่งเกิดขึ้นมากมาย และมีการส่งทั้งระบบ AM และFM เช่นในปัจจุบัน

หลักการทำงาน

  • วงจรเลือกรับความถี่วิทยุ เนื่องจากสถานีส่งวิทยุหลายๆสถานี แต่ละสถานีจะมีความถี่ของตนเอง ดังนั้นจะต้องเลือกรับความถี่ที่ต้องการรับฟังในขณะนั้น
  • วงจรขยายความถี่วิทยุ ทำหน้าที่นำเอาสัญญาณความถี่วิทยุที่เลือกรับเข้ามา มาทำการขยายสัญญาณให้มีกำลังแรงมากขึ้นเพียงพอกับความต้องการ
  • วงจรดีเทคเตอร์ ทำหน้าที่ตัดคลื่นพาหะออกหรือดึงคลื่นพาหะลงดินให้เหลือเฉพาะสัญญาณความถี่เสียง (AF) เพียงอย่างเดียว
  • วงจรขยายสัญญาณเสียง ทำหน้าที่ขยายสัญญาณทางไฟฟ้าของเสียงให้มีกำลังแรงขึ้น ก่อนที่จะส่งออกยังลำโพง
  • ลำโพง เมื่อได้รับสัญญาณทางไฟฟ้าของเสียงก็จะเปลี่ยนพลังงานจากสัญญาณทางไฟฟ้าของเสียงให้เป็นเสียงรับฟังได้
เครื่องรับวิทยุ AM แบบ Superheterodyne วิทยุกระจายเสียงแบบ AM จะ มีช่วงความถี่อยู่ที่ประมาณ 535 KHz - 1,605 KHz แต่ละ สถานีจะมี Bandwidth ประมาณ 10 KHz ความถี่ IF เท่ากับ 455 KHz

วิทยุออนไลน์

สถานีวิทยุออนไลน์ คือ การให้บริการ Streaming Audio หรือการแพร่กระจายสัญญาณเสียงผ่านระบบอินเทอร์เน็ต โดยสามารถจัดผังรายการได้เองตามที่ต้องการ เพื่อตั้งสถานีวิทยุจัดรายการออนไลน์สด ทั้งพูดคุยและเปิดเพลง รูปแบบเดียวกับการจัดรายการของสถานีวิทยุปกติ
การทำงานของบล็อกไดอะแกรมเครื่องรับวิทยุFM



1.สายอากาศ (Antenna) จะทำหน้าที่รับสัญญาณคลื่นวิทยุที่ส่งจากสถานีต่างๆ เข้ามาทั้งหมดโดยไม่จำกัดว่าเป็นสถานีใด ถ้าสถานีนั้นๆ ส่งสัญญาณมาถึง สายอากาศจะส่งสัญญาณต่างๆไปยังภาค RF โดยส่วนใหญ่สายอากาศของเครื่องรับวิทยุ FM จะเป็นแบบไดโพล (Di-Pole) ซึ่งเป็นสายอากาศแบบสองขั้ว จะช่วยทำให้การรับสัญญาณดียิ่งขึ้น
2.ภาคขยาย RF (Radio Frequency Amplifier) จะทำงานเหมือนกับเครื่องรับวิทยุ AM คือจะทำหน้าที่รับสัญญาณวิทยุในย่าน FM 88 MHz – 108 MHz เข้ามาและเลือกรับสัญญาณ FM เพียงสถานีเดียวโดยวงจรจูนด์ RF และขยายสัญญาณ RF นั้นให้แรงขึ้น เพื่อให้มีกำลังสูง เหมาะที่จะส่งไปบีท (Beat) หรือผสมในภาคมิกเซอร์ (Mixer) โดยข้อแตกต่างสำคัญของภาคขยาย RF ของเครื่งรับ AM และ FM คือ วิทยุFM ใช้ความถี่สูงกว่า AM ดังนั้นการเลือกอุปกรณ์มาใช้ในวงจรขยายจะต้องหาอุปกรณ์ที่ให้การตอบสนองความถี่ในย่าน FM ได้ และต้องขยายช่องความถี่ที่กว้างของ FM ได้
3.ภาคมิคเซอร์ (Mixer) จะทำงานโดยจะรับสัญญาณเข้ามาสองสัญญาณ ได้แก่สัญญาณ RF จากภาคขยาย RF และสัญญาณ OSC. จากภาคโลคอลออสซิลเลเตอร์ เพื่อผสมสัญญาณ (MIX.) ให้ได้สัญญาณออกเอาท์พุตตามต้องการ สัญญาณที่ออกจากภาคมิกเซอร์มีทั้งหมด 4 ความถี่ คือ

a)     ความถี่ RF ที่รับเข้ามาจากวงจรจูน RF (RF)

b)     ความถี่ OSC. ที่ส่งมาจากภาคโลคอล ออสซิลเลเตอร์ (OSC.)

c)     ความถี่ผลต่างระหว่าง OSC. กับ RF. จะได้เป็นคลื่นขนาดกลางหรือที่เรียกว่า IF (Intermediate Frequency) ได้ความถี่ 10.7 MHz

d)     ความถี่ผลบวกระหว่าง OSC. กับ RF

ความถี่ที่วงจรจูนด์ IF ให้ผ่านมีความถี่เดียว คือความถี่ IF เท่ากับ 10.7 MHz ไม่ว่าภาคขยาย RF จะรับความถี่เข้ามาเท่าไรก็ตาม และภาค OSC. จะผลิตความถี่ขึ้นมาเท่าไรก็ตาม เมื่อเข้าผสมกันที่ภาคมิกเซอร์แล้วจะได้ความถี่ IF เท่ากับ 10.7 MHz ออกเอาท์พุตเสมอ
4.ภาคโลคอล ออสซิลเลเตอร์ (Local Oscillator) ทำงานเหมือนกับเครื่องรับวิทยุ AM คือ ผลิตความถี่ที่มีความแรงคงที่ขึ้นมา ความถี่ที่ผลิตขึ้นจะสูงกว่าความถี่ที่วงจรจูนด์ RF รับเข้ามาเท่ากับความถี่ IF คือ 10.7 MHz. เช่น วงจรจูนด์ RF รับความถี่เข้ามา 100 MHz. ความถี่ OSC. จะผลิตขึ้นมา 100 MHz. + 10.7 MHz. = 110.7 MHz.
5.ภาคขยาย IF (Intermediate Frequency Amplifier) จะทำหน้าที่เหมือนเครื่องรับวิทยุ AM และยังสามารถขยายความถี่ IF ทั้งของ AM และ FM ได้ ในเครื่องรับวิทยุบางรุ่นที่มีทั้ง AM และ FM ในเครื่องเดียวกัน อาจใช้ภาคขยาย IF ร่วมกันทั้งวิทยุ AM และวิทยุ FM คือขยายความถี่ IF ให้มีระดับความแรงมากขึ้นแบบไม่ผิดเพี้ยน โดยภาคขยาย IF ของคลื่น FM นั้นขยายความถี่ได้ตลอดย่าน 10.7 MHz. นับว่ามีความถี่สูงกว่าเครื่องรับ AM ซึ่งโดยปกติเครื่องรับแบบ AM มีความถี่เพียง 455 kHz. เท่านั้น ส่วนที่แตกต่างกันระหว่างIF ของ AM และ FM คือ ในส่วนวงจรจูนด์ IF เพราะใช้ความถี่ไม่เท่ากัน ค่าความถี่เรโซแนนท์ต่างกัน การกำหนดค่า L, C มาใช้งานต่างกัน
6.ภาคดีเทคเตอร์ (Detector) ดีเทคเตอร์ของเครื่องรับ FM นั้นมีความแตกต่างกับเครื่องรับ AM ทั้งนี้เพราะวิธีผสมคลื่นของสถานีส่งทั้งสองแบบนี้ไม่เหมือนกัน โดยภาคดีเทคเตอร์ทำหน้าที่แยกสัญญาณเสียงออกจากความถี่ IF แต่จะแตกต่างกันในระบบการแยกเสียง เพราะในระบบ AM สัญญาณเสียงถูกผสมมาทางความสูงของคลื่นพาหะ สามารถแยกได้โดยใช้ไดโอดหรือทรานซิสเตอร์ร่วมกับ R, C ฟิลเตอร์ก็สามารถตัดความถี่ IF ออกเหลือเฉพาะสัญญาณเสียงได้ ส่วนในระบบวิทยุ FM สัญญาณเสียงจะผสมกับพาหะ โดยสัญญาณเสียงทำให้คลื่นพาหะเปลี่ยนความถี่สูงขึ้นหรือต่ำลง ส่วนความแรงคงที่ ไม่สามารถใช้วิธีการดีเทคเตอร์แบบ AM ได้ ต้องใช้วิธีพิเศษ เช่น ดิสคริมิเนเตอร์ (Discriminator), เรโชดีเทคเตอร์ (Ratio Detector), เฟส ล็อค ลูป ดีเทคเตอร์ (Phase Lock Loop Detector) เป็นต้น จะแตกต่างจากของ AM โดยสิ้นเชิง
7.ภาคขยายเสียง (Audio Frequency Amplifier) ใช้งานร่วมกับของเครื่องรับวิทยุ AM ได้ เพราะทำหน้าที่ขยายเสียงที่ส่งมาจากภาคดีเทคเตอร์ ให้มีระดับความแรงมากขึ้นแบบไม่ผิดเพี้ยนพอที่จะไปขับลำโพงให้เปล่งเสียงออกมา โดยในเครื่องรับวิทยุบางแบบอาจมีภาคขยายเสียงในตัว แต่บางแบบอาจจะไม่มีเครื่องขยายเสียงในตัว แต่จะมีอยู่ต่างหาก เครื่องรับวิทยุที่มีเครื่องขยายเสียงภายนอกเรียกว่า จูนเนอร์ (Tunner)
8.ภาคจ่ายกำลังไฟ (Power Supply) ทำหน้าที่จ่ายแรงดันไฟ DC เลี้ยงวงจรของเครื่องรับวิทยุ FM ซึ่งจะต้องใช้วงจรเรกกูเลเตอร์ (Regulator) ควบคุมแรงดันไฟ DC ให้คงที่เพื่อเลี้ยงวงจร ทำให้คุณภาพของเครื่องรับวิทยุ FM ดีขึ้น หลักการทำงานคือ หลังจากที่ได้รับตัวสัญญาณเสียงจากไมโครโฟนหรือแหล่งเสียงอื่นๆแล้ว สัญญาณเสียงจะถูกเปลี่ยนรูปเป็นสัญญาณไฟฟ้า สัญญาณไฟฟ้านั้นจะถูกนำไปเข้าระบบAmplifier เพื่อขยายกำลังของสัญญาณเสียงที่ได้ หลังจากขยายแล้ว ก็จะนำส่งต่อไปยังภาคของModulation โดยสัญญาณที่จะนำมาModulation ด้วยนั้นคือสัญญาณจากตัวOscillator ซึ่งจะผลิตความถี่ได้ในช่วง 88 - 108 MHz โดยจะต้องมีการเลือกสร้างคลื่นที่ความถี่ใดความถี่หนึ่งในช่วงความถี่ดังกล่าว ซึ่งจะสร้างขึ้นเพื่อใช้เป็นคลื่นนำพา โดยหลักการModulation ของ FMคือ จะนำคลื่นนำพาที่ได้มาปรับความถี่ตามแอมปลิจูดและความถี่ของคลื่นเสียง โดยที่เฟสและแอมปลิจูดของคลื่นนำพายังคงคงที่ จะเปลี่ยนแปลงเฉพาะความถี่เท่านั้น (ส่วนของModulation จะมีรายละเอียดเพิ่มเติมในหัวข้อถัดไป) หลังจากนั้น สัญญาณที่ได้จากการModulation (เรียกว่าสัญญาณ RF) จะถูกนำไปขยายสัญญาณความถี่วิทยุให้แรงขึ้น เพื่อที่จะให้เพียงพอต่อการส่งสัญญาณไปในอากาศ จากนั้นจึงส่งออกไปทางเสาอากาศ

Modulation
หลักการ Modulationคือ ความถี่ของคลื่น RFที่ได้จะแปรผันไปตามความถี่และแอมพลิจูดของคลื่นเสียง เช่น ถ้ามีคลื่นนำพาที่มีความถี่100kHz นำมาModulation กับคลื่นเสียงที่มีความถี่อยู่ที่ 40 Hz แล้ว คลื่น RF ที่ได้หลังการ Modulation ก็จะมีลักษณะของความถี่ที่เปลี่ยนไปตามค่าแรงดัน (แอมปลิจูด) ถ้าแอมปลิจูดเป็นบวก ความถี่ของ RF ก็จะมีค่าสูงขึ้น ในซีกบวกของแอมปลิจูดของคลื่นเสียงจึงก่อให้เกิดความถี่ของRF ในช่วงตั้งแต่ 100ถึง 100 + 0.04 kHzในทางกลับกัน ถ้าหากแอมปลิจูดเป็นลบ ความถี่ของ RF ก็จะมีค่าต่ำลง ในซีกลบของแอมปลิจูดของคลื่นเสียงจึงก่อให้เกิดความถี่ของRF ในช่วงตั้งแต่ 100 - 0.04 ถึง 100 kHz กรณีแอมพลิจูดเป็นศูนย์ความถี่ของ RF จะีมีค่าเท่าเดิม เพราะฉะนั้นช่วงห่างความถี่รวมของคลื่นRF รวมนี้ก็จะมีค่าตั้งแต่99.96 ถึง 100.04 kHz โดยหากในส่วนของแอมปลิจูดของคลื่นเสียงนี้มีค่าสูงขึ้น ก็จะทำให้ช่วงหางของความถี่ของRF นั้นมีค่าเปลี่ยนไปด้วย เช่นจากตัวอย่างที่แล้ว คลื่นเสียงที่มีความถี่เป็น 40 Hz แต่ีเมื่อมีแอมพลิจูดที่สูงขึ้นก็จะทำให้ช่วงห่างของความถี่ยาวขึ้นก็คือทำให้ช่วงห่างของความถี่ของRF ที่เกิดขึ้นก็จะเท่ากับ99.92 ถึง 100.08 kHz
(ในทางกลับกันถ้าแอมพลิจูดของคลื่นเสียงที่ความถี่40Hz ต่ำลงก็อาจทำให้ช่วงห่างของความถี่แคบเข้า เช่น อาจเหลือความถี่เป็นช่วงแค่ 99.99 ถึง100.01 ก็ได้)

Sideband
Sideband คือ กลุ่มของย่านความถี่ที่ใกล้เคียงกับความถี่ของคลื่นนำพา ซึ่งเป็นผลจากการทำModulation สัญญาณ เช่น เมื่อนำคลื่นพาหะที่ความถี่ 100 kHz มาผสมกับคลื่นเสียงที่ีมีความถี่40 Hz เมื่อทำModulation แล้วจะมีSideband ที่100.04kHz - 99.06kHzซึ่งจำนวนที่อยู่ระหว่างความถี่นี้จะมีจำนวนไม่จำกัด Spectrum ที่เห็นจึงเป็นตัวแทนของความถี่บริเวณใกล้เคียง ในความเป็นจริงนั้น Spectrum ที่อยู่ไกลจากความถี่คลื่นนำพาจะมีค่าพลังงานและความสำคัญที่น้อยมากจนแทบไม่มีผลในการวิเคราะห์

การ Modulationสัญญาณคลื่นเสียงกับคลื่นนำพานั้น จะได้ผลลัพท์เป็นสัญญาณที่มีความถี่ใกล้เคียงกับค่าความถี่เฉพาะที่สถานีนั้นครอบครองอยู่ เช่นสถานีหนึ่งส่งกระจายเสียงที่ความถี่ 100MHz จะมีแบนด์วิธที่ครอบคลุมSideband สัญญาณที่ส่งออกไป โดย FCC ได้กำหนดไว้ว่าการส่งวิืทยุFM นั้นมี Bandwidth ได้สูงสุด 150kHz ดังรูปด้านกรอบบน แต่เพื่อไม่ให้มีการชนกันของคลื่นที่มีความถี่ใกล้เคียงกันจึงมีการเพิ่มส่วนกันชนกันของคลื่นทำให้ในคลื่นนึงจะมีความถี่รวมกับส่วนกันชนแล้ว 200 kHz ดังรูปที่กรอบด้านล่างคือการลำลองสถานีที่ีมีการกระจายเสียงย่านความถี่ใกล้กัน จะเห็นว่าสัญญาณที่ทั้งสองส่งมาจะไม่ทับซ้อนกัน เนื่องจากช่องว่างระหว่างแบนด์วิธของทั้งสองสถานี จะถูกละเอาไว้เพื่อใช้แบ่งแยกกันระหว่างสถานี
การส่งสัญญาณ FM นั้นในแต่ละสถานีจะใช้Bandwidth 200 kHzซึ่ง Bandwidth ที่้ใช้ในการส่งสัญญาณจริงๆนั้นคือ 150 kHz แต่จะมีช่องว่างภายในแบนด์วิธในช่วงที่เหลือคือที่ความถี่ +25 kHz และ -25 kHz เช่น ถ้าส่งที่ความถี่ 100 MHzจะใช้คลื่นความถี่ในช่วง99.925-100.075 MHzในการส่งข้อมูลสัญญาณและเว้นเป็นช่องว่างกันชนในช่วง 99.900 - 99.925และ 100.075 - 100.100 รวมเป็น 200 kHz เพื่อให้การส่งสัญญาณออกอากาศทำได้พร้อมๆกันหลายสถานี แม้จะมีสถานีอยู่ใกล้ๆกัน ในคลื่นวิทยุภายในหนึ่งช่วงเวลาจึงนำพาข้อมูล (carry information)ของแต่ละสถานีที่ออกอากาศได้พร้อมๆ กันซึ่งไม่เป็นปัญหาเมื่อผู้ฟังต้องการฟังเฉพาะบางรายการ ส่วนวิธีการที่ทำให้สามารถเลือกรับฟังได้นั้น อยู่ที่หัวข้อต่อไป ในการส่งวิทยุ FM นั้นจะอยู่ในความถี่ช่วง 88-108 MHzซึ่งมี Bandwidth รวม 20 MHz ดังนั้นจะมีสถานีวิทยุที่ส่งได้โดยไม่กวนกันคือ20MHz / 200 kHz หรือประมาณ 100 สถานี ซึ่งในปัจจุบันนี้ในเมืองไทยโดยเฉพาะในกรุงเทพมีการใช้ Bandwidth ของFM ค่อนข้างเต็มแล้ว คือ มีคลื่นวิทยุตั้งแต่ 88.00, 88.25, 88.5, 88.75, 90.00 ไล่ไปเรื่อยๆ ซึ่งมีประมาณ 80 สถานี ซึ่งถ้าจะให้มีสถานีเพิ่มขึ้นอีกให้ครบ 100 สถานีคงจะไม่ได้เพราะในทางปฎิบัติจริงอาจมีการใช้ Bandwidthที่เกินไปบ้าง จะเห็นได้จากแม้ในกรุงเทพจะมีสถานีแค่ 80 สถานี ก็เริ่มมีีการกวนของสัญญาณกันแล้ว เหตุผลที่มี Bandwidthเกินอาจเนื่องจากอุปกรณ์ที่ไม่ได้มาตรฐาน เช่น สถานีวิทยุชุมชนมักใช้เครื่องส่งราคาถูกที่ไม่ีีมีคุณภาพทำให้มีการฟุ้งกระจายของคลื่น คือใช้ Bandwidthที่สูงเกินไปทำให้มีความถี่บางส่วนถูกส่งไปในย่านของความถี่ของสถานีอื่นทำให้เกิดการกวนกับสัญญาณในคลื่นหลักอื่นๆได้

ข้อดีและข้อเสียของสัญญาณวิทยุ FM
ข้อดีของสัญญาณวิทยุFM
การส่งสัญญาณวิทยุแบบ FM ทนต่อสัญญาณรบกวนได้ดีกว่า จากสองปัจจัย คือสัญญาณรบกวนส่วนใหญ่จะเป็นสัญญาณที่เกิดจากการเปลี่ยนแปลงทางแอมพลิจูดซึ่ง FM ใช้วิธีการในการเปลี่ยนแปลงทางความถี่ของคลื่นพาหะโดยไม่เปลี่ยนแปลงแอมพลิจูดทำเกิดผลกระทบเมื่อมีสัญญาณรบกวนที่เกิดจากการเปลี่ยนแปลงแอมพลิจูดน้อยมาก แต่ AM จะส่งโดยการเปลี่ยนแปลงทางแอมพลิจูดของคลื่นพาหะทำให้เกิดสัญญาณรบกวนที่เกิดจากการเปลี่ยนแปลงทางแอมพลิจูดนั้นจะมีผลต่อสัญญาณมากกว่าทำให้มีคลื่นรบกวนได้ง่ายกว่า FMคลื่นเอฟเอ็มนั้นมีความถี่สูงซึ่งเป็นความถี่ที่แตกต่างจากความถี่ที่เกิดในธรรมชาติมากกว่าคลื่นเอเอ็มซึ่งมีความถี่ต่ำกว่าทำให้คลื่นเอเอ็มนั้นจะถูกรบกวนได้ง่ายจากคลื่นแม่เหล็กไฟฟ้าต่างๆในธรรมชาติที่มีความถี่ต่ำใกล้เคียงกับคลื่นเอเอ็ม เช่น ฟ้าแลบ, ฟ้าผ่า,ประกายไฟฟ้าในอากาศ เป็นต้นการส่งสัญญาณวิทยุแบบ FM จะมีความถี่สูงจึงมีพลังงานสูงทำให้สามารถส่งทะลุผ่านบรรยากาศในชั้นไอโอโนสเฟียร์ได้จึงสามารถใช้ในการติดต่อสื่อสารกับอุปกรณ์ต่างๆที่อยู่นอกโลกได้ เช่น ยานอวกาศการส่งสัญญาณวิทยุแบบ FM จะมีคุณภาพเสียงดีกว่าเพราะมี Bandwidthที่ส่งกว้างมากกว่าแบบ AMคลื่นวิทยุนั้นสามารถเลี้ยวเบนผ่านสิ่งกีดขวางที่มีขนาดใกล้เคียงกับความยาวคลื่นได้

ข้อเสียของสัญญาณวิทยุFM
เมื่ออยู่ในจุดอับสัญญาณเช่น ในชั้นใต้ดิน หรือในตัวอาคารใหญ่ๆ จะทำให้สัญญาณไม่ชัดหรืออาจจะรับสัญญาณนั้นไม่ได้เลยการส่งสัญญาณวิทยุแบบ FM จะส่งได้ระยะน้อยกว่าAM เพราะการส่งแบบ FM มีความถี่สูงจึงมีพลังงานสูงทำให้มีการสะท้อนที่บรรยากาศชั้นไอโอโนสเฟียร์น้อยมากดังนั้นทำให้เครื่องรับบนพื้นโลกนั้นจะรับได้เฉพาะสัญญาณที่ส่งมาจากเครื่องส่งโดยตรง ตรงกันข้ามกับการส่งแบบ AM ที่มีความถี่ไม่สูงมากจึงมีพลังงานต่ำจึงสามารถสะท้อนกลับลงมาจากบรรยากาศชั้นไอโอโนสเฟียร์กลับสู่ผิวโลกอีกครั้งทำให้ส่งได้ไกลกว่าเนื่องจากบนพื้นโลกอาจได้รับสัญญาณจากเครื่องส่งโดยตรงหรือได้รับสัญญาณจากการสะท้อนก็ได้เนื่องจากโลหะมีสมบัติสะท้อนและดูดกลืนคลื่นแม่เหล็กไฟฟ้าได้ดี ทำให้คลื่นวิทยุผ่านเข้าไปในโลหะได้ยาก ซึ่งอาจมีวัตถุบางอย่างที่มีผลต่อการรับสัญญาณวิทยุFM เช่น ฟิล์มกรองแสงชนิดผสมโลหะในการทำเครื่องรับและเครื่องส่งของวิทยุ FM นั้นมีความซับซ้อนทำได้ยากกว่าเครื่องรับส่งวิทยุAM
หลักการทำงานของเครื่องส่งวิทยุสื่อสารเอฟเอ็ม
เมื่อมีสัญญาณเสียงผ่านไมโครโฟนก็จะเปลี่ยนเป็นสัญญาณไฟฟ้าส่งมายังภาค Pre-Amplifier เพื่อทำการขยายสัญญาณให้มีความแรงที่เหมาะสม และนำสัญญาณเสียงไปทำการมอดูเลตกับสัญญาณคลื่นพาห์ส่งต่อไปยังภาคทวีคูณความถี่ (Multiplier) ขเพื่อทวีคูณความถี่ให้สูงขึ้นตามความต้องการของระบบและส่งต่อไปยังภาคขยายกำลังความถี่วิทยุเพื่อขยายกำลังให้มีความแรงสูงขึ้น ก่อนส่งไปยังสายอากาศให้แพร่กระจายคลื่นออกไปในอากาศ

4.2.2 เครื่องส่งวิทยุกระจายเสียง FM STEREO MULTIPLEX
การส่งกระจายเสียงวิทยุระบบ FM STEREO MULTIPLEX เป็นระบบที่คิดค้นภายหลังจากการกระจายเสียงแบบอื่นๆ โดยในปี พ.ศ. 2460 อาร์มสตรองได้คิดค้นการกระจายเสียงระบบ FM ได้เป็นผลสำเร็จ ต่อมาปี พ.ศ. 2490 มีผู้ทดลองส่งกระจายเสียงระบบสเตอริโอโดยใช้ความถี่เสียงหนึ่งส่งกระจายเสียงซีกขวา และใช้อีกความถี่หนึ่งส่งสัญญาณเสียงซีกซ้ายซึ่งทำให้เกิดความสิ้นเปลือง เพราะจะต้องมีเครื่องรับสองเครื่อง กล่าวคือ เครื่องรับเครื่องแรกจะรับสัญญาณเสียงซีกซ้ายไปขยายออกลำโพง ส่วนเครื่องรับเครื่องที่สองจะรับสัญญาณเสียงซีกขวาไปขยายออกลำโพงเช่นกัน
เวลาต่อมาจึงได้มีการพัฒนาการส่งวิทยุระบบ FM โดยใช้เครื่องส่งเพียงเครื่องเดียวที่สามารถส่งทั้งสัญญาณเสียงด้านซ้าย (L) และสัญญาณเสียงด้านขวา (R) ไปพร้อมๆกัน โดยการติดตั้งอุปกรณ์พิเศษเข้าไปที่เครื่องส่งเรียกว่า เครื่องกำเนิดสัญญาณสเตอริโอหรือมัลติเพล็กซ์เอนโคเดอร์ (Multiplex encoder) และผู้ฟังก็มีเครื่องรับ FM เพียงเครื่องเดียว ซึ่งจะติดตั้งอุปกรณ์พิเศษเพิ่มเติมเข้าไปที่เครื่องรับเรียกว่า สเตอริโอดีมอดูเลเตอร์ (Stereo demodulator) หรือมัลติเพลกซ์ดีโคเดอร์ (Multiplex decoder) ก็สามารถทำให้รับฟังเสียงเป็นแบบสเตอริโอจากเครื่องขยายเสียงสองชุดได้
จากนั้นอาร์มสตรองและคณาจารย์มหาวิทยาลัยโคลัมเปีย ประเทศสหรัฐอเมริกา ได้คิดค้นระบบการส่งกระจายเสียงที่พัฒนาขึ้นเรียกระบบนี้ว่า สเตอริโอมัลติเพล็กซ์ โดยมีหลักการคือการนำเอาสัญญาณเสียงซีกซ้าย (L) และสัญญาณเสียงซีกขวา (R) มามัลติเพล็กซ์หรือรวมกันแล้วผสมกับคลื่นพาห์ก่อนส่งออกไปยังเครื่องรับหลังจากนั้นที่เครื่องรับก็จะมีกระบวนการในการแยกเอาสัญญาณเสียงซีกซ้าย (L) และสัญญาณเสียงซีกขวา (R) ออกจากคลื่นพาห์อีกครั้ง
(ก) การกำเนิดสัญญาณเอฟเอ็มสเตอริโอ (FM Stereo Generation)
สัญญาณเสียงจากไมโครโฟนด้านซ้าย (L) และด้านขวา (R) จะผ่านวงจรขยายเสียงแล้วป้อนให้กับวงจรพรีเอมฟาซิส (Preemphasis) เพื่อยกระดับแอมปลิจูดของความถี่สูงให้มีระดับสูงขึ้นแล้วส่งไปยังวงจรเมตริกซ์เน็ตเวิร์ค (Matrix Network) หรือบางครั้งเรียกว่า Multiplex Encoder ก็ได้จะทำการบวกและลบสัญญาณทั้งสองจึงทำให้ได้สัญญาณเอาต์พุตเป็น L+R และ L-R ที่มีความถี่เสียงอยู่ระหว่าง 30Hz - 15 kHz ทั้งสองสัญญาณ
สัญญาณผลบวก (L+R) จะส่งเข้าวงจรดีเลย์เน็ตเวิร์ค (Delay Network) เพื่อหน่วงเวลาให้สัญญาณไปถึงที่อินพุตของวงจรรีแอกแตนซ์มอดูเลเตอร์ (Reactance Stage Modulator) พร้อมกับสัญญาณ (L-R) แบบ DSB ที่ได้จากเอาต์พุตของวงจรบาลานซ์มอดูเลเตอร์เพื่อจัดเฟสให้ตรงกันก่อนที่จะส่งไปยังอินพุตของวงจรรีแอกแตนซ์มอดูเลเตอร์
สัญญาณผลต่าง (L-R) จะส่งไปมอดูเลตกับคลื่นพาห์ย่อยความถี่ 38 kHz แบบ AM ที่วงจรบาลานซ์มอดูเลเตอร์ (Balanced Modulator) ทำให้ได้สัญญาณเอาต์พุต AM แบบ DSB-SC ที่กำจัดคลื่นพาห์ย่อยความถี่ 38 kHz ออกไปโดยสัญญาณเอาต์พุตที่ได้จะมีเฉพาะไซด์แบนด้านต่ำ (LSB) และไซด์แบนด้านสูง (USB) เท่านั้น ซึ่งมีความถี่ต่ำกว่าและสูงกว่าความถี่คลื่นพาห์ย่อย 38 kHz คือความถี่ 23 kHz (38 kHz – 15 kHz) และ 53 kHz (38 kHz + 15 kHz) ตามลำดับ
สัญญาณไพลอตความถี่ 19 kHz จะส่งไปยังอินพุตของภาครีแอกแตนซ์มอดูเลเตอร์โดยตรงและนำไปผ่านวงจรทวีคูณความถี่ 2 เท่าเพื่อทำเป็นความถี่คลื่นพาห์ย่อย 38 kHz แล้วป้อนให้แก่ภาคบาลานซ์มอดูเลเตอร์
ดังนั้นที่อินพุตของภาครีแอกแตนซ์มอดูเลเตอร์ จะประกอบด้วยความถี่ 3 ความถี่คือ
1. สัญญาณไซด์แบนด์ L+R ความถี่ 30Hz - 15kHz จากภาค Adder L+R
2. สัญญาณไซด์แบนด์ L-R ความถี่ 23–53 kHz จากภาค Balance Modulator
3. สัญญาณไพลอต (Pilot Carrier) ความถี่ 19kHz จากภาค Master Oscillator
ซึ่งสัญญาณทั้งหมด เรียกว่าสัญญาณรวม(Composite Signal) ที่จะถูกมัลติเพล็กซ์ (Multiplex) เข้าด้วยกัน จากนั้นก็ทำการมอดูเลตกับความถี่วิทยุหลักความถี่ 88-108MHz ที่ ภาครีแอกแตนซ์มอดูเลเตอร์ (หรือภาคเอฟเอ็มมอดูเลเตอร์) และทำการขยายสัญญาณให้แรงขึ้นอีกครั้งหนึ่งเพื่อส่งออกอากาศต่อไป

เหตุผลและความจำเป็นที่ต้องส่งสัญญาณทั้งสามออกไปยังเครื่องรับ คือ
1. สัญญาณผลบวก (L+R) เป็นผลรวมของสัญญาณเสียงซีกซ้ายและซีกขวา ซึ่งเป็นสัญญาณเสียงแบบโมโน ทั้งนี้เพื่อทำให้เครื่องรับวิทยุแบบโมโนสามารถจะรับสัญญาณที่ส่งไปแบบสเตอริโอมัลติเพล็กซ์ได้โดยเสียงที่ขับออกลำโพงมีครบทั้งซีกซ้ายและซีกขวา แต่ไม่มีการแยกทิศทางและคุณภาพเสียงเหมือนการฟังจากสถานีวิทยุโดยทั่วไป
2. สัญญาณผลต่าง (L-R) เหตุผลที่ต้องนำสัญญาณ L–R ไปมอดูเลตกับคลื่นพาห์ย่อย 38 kHz ก่อนก็เพราะต้องการส่งสัญญาณ L–R รวมไปพร้อม ๆ กับสัญญาณ L+R โดยไม่ต้องการให้สัญญาณทั้งสองสอดแทรกกันซึ่งเรียกว่า การมัลติเพล็กซ์สัญญาณเข้าด้วยกันนั่นเอง
ส่วนทางด้านเครื่องรับวิทยุจะมีวิธีการแยกเสียงออกจากกัน สามารถอธิบายได้โดยพิจารณาสมการทางคณิตศาสตร์คือ
เมื่อนำเอาสัญญาณ (L+R) และ (L–R) มาบวกกัน จะได้
(L+R) + (L–R) = 2L คือสัญญาณเสียงซีกซ้าย = 2L
และเมื่อนำสัญญาณ (L+R) และ (L–R) มาลบกัน จะได้
(L+R) - (L–R) = 2R คือสัญญาณเสียงซีกขวา = 2R
3. สัญญาณไพลอต 19 kHz เนื่องจากสัญญาณเสียง (L–R) ที่ส่งมายังเครื่องรับเป็นสัญญาณเสียงที่มอดูเลตกับคลื่นพาห์ย่อย 38 kHz ดังนั้นในการนำมาเสริมหรือหักล้างกับสัญญาณ (L+R) ในวงจรแยกสัญญาณสเตอริโอเพื่อให้เกิดเป็นสัญญาณเสียงซีกซ้ายและซีกขวานั้นจำเป็นจะต้องมีสัญญาณ 38 kHz ที่มีเฟสสัมพันธ์กับคลื่นพาห์ย่อยที่มอดูเลตมากับสัญญาณ (L–R) เพื่อช่วยให้วงจรดีโคดเดอร์ทำการแยกสัญญาณได้จึงต้องมีการส่งสัญญาณไพลอทโทน 19 kHz มาด้วย เพราะความถี่ 19 kHz เมื่อมาถึงเครื่องรับก็สามารถทำให้เป็นความถี่ 38 kHz ได้โดยง่ายด้วยการใช้วงจรทวีคูณความถี่ 2 เท่า และความถี่ 19 kHz ซึ่งเป็นแหล่งกำเนิดของสัญญาณคลื่นพาห์ย่อยทางด้านเครื่องส่งความถี่ 38 kHz ที่ได้จึงมีเฟสที่สัมพันธ์กับสัญญาณคลื่นพาห์ (L–R)


พิจารณาไซด์แบนด์ของสัญญาณรวม (Composite Signal) จะได้
สัญญาณเสียง (L+R) = 15 kHz
สัญญาณไซด์แบนด์ด้านต่ำ (LSB)
LSB = 38 kHz – 15 kHz
= 23 kHz
สัญญาณไซด์แบนด์ด้านสูง (USB)
USB = 38 kHz + 15 kHz
= 53 kHz


สัญญาณแชนแนลย่อย SCA (Subsidiary Communication Authorization) หรือ Subsidiary Carrier Authorization บางครั้งอาจเรียกว่า “Storecast” ก็ได้ หมายถึงการส่งกระจายเสียงในระบบ FM ซึ่งทำการสอดแทรกสัญญาณข่าวสารหรือรายการที่นอกเหนือจากรายการปกติพร้อมกับการส่งกระจายเสียงของระบบ FM โดยไม่ก่อให้เกิดการรบกวนกันระหว่างสัญญาณข่าวสารหรือรายการ สัญญาณนี้ประกอบด้วยความถี่คลื่นพาห์ย่อยความถี่ 67 kHz ที่มอดูเลตแบบเอฟเอ็มแบนด์แคบ (Narrow band FM) โดยมีการเบี่ยงเบนทางความถี่ ( ) เท่ากับ kHz (มีความถี่อยู่ระหว่าง 59.5-74.5 kHz) ซึ่งสัญญาณนี้จะนำไปใช้ในการส่งเสียงเพลงสำหรับร้านค้า ร้านอาหาร หรือการโฆษณาอื่นๆ
สำหรับระบบ SCA ในประเทศไทย (โดยเฉพาะกรุงเทพฯ) ทางองค์การขนส่งมวลชนกรุงทพ (ขสมก.) ได้นำมาใช้ในการกระจายเสียงสำหรับรถเมล์ ที่เรียกกันว่า FM.SCA โดยใช้ความถี่คลื่นพาห์หลักร่วมกับสถานีวิทยุของ ขส.ทบ. ซึ่งส่งกระจายเสียงในความถี่ 102.00MHz ถ้าหากต้องการรับฟังสัญญาณเสียงระบบ FM.SCA ก็จะต้องติดตั้งอุปกรณ์ SCA Decoder เพิ่มไปในเครื่องรับจึงทำให้สามารถรับฟังได้
- การส่งวิทยุกระจายเสียงระบบ FM Mono กำหนด Bandwidth ของคลื่นเท่ากับ 180 kHz
- การส่งวิทยุกระจายเสียงระบบ FM Stereo Multiplex กำหนด Bandwidth ของคลื่นเท่ากับ 256 kHz
- การส่งวิทยุกระจายเสียงระบบ FM Stereo Multiplex with SCA กำหนด Bandwidth ของคลื่นเท่ากับ 300 kHz












ความคิดเห็น

โพสต์ยอดนิยมจากบล็อกนี้

ระบบเครือข่ายโทรศัพท์เคลื่อนที่

ภาคBASEBAND หรือ ภาคBB